Numerical Modeling of Multiphase Flow in Porous Media
نویسنده
چکیده
The simultaneous flow of immiscible fluids in porous media occurs in a wide variety of applications. The equations governing these flows are inherently nonlinear, and the geometries and material properties characterizing many problems in petroleum and groundwater engineering can be quite irregular. As a result, numerical simulation often offers the only viable approach to the mathematical modeling of multiphase flows. This paper provides an overview of the types of models that are used in this field and highlights -some of the numerical techniques that have appeared recently. The exposition includes discussions of multiphase, multispecies flows in which chemical transport and interphase mass transfers play important roles. The paper also examines some of the outstanding physical and mathematical problems in multiphase flow simulation. The scope of the paper is limited to isothermal flows in natural porous media; however, many of the special techniques and difficulties discussed also arise in artificial porous media and multiphase flows with thermal effects.
منابع مشابه
Non-Darcy displacement of immiscible fluids in porous media
This paper presents a Buckley-Leverett analytical solution for non-Darcy displacement of two immiscible fluids in porous media. The multiphase non-Darcy displacement is described using a Forchheimer equation or other non-Darcy flow correlations under multiphase flow conditions. The analytical solution is used to obtain some insight into the physics of displacement involving non-Darcy flow effec...
متن کاملUpscaled Modeling in Multiphase Flow Applications
In the paper we consider upscaling of multiphase flow in porous media. We propose numerical techniques for upscaling of pressure and saturation equations. Extensions and applications of these approaches are considered in the paper. Numerical examples are presented.
متن کاملUpscaling of Transport Equations for Multiphase and Multicomponent Flows
In this paper we discuss upscaling of immiscible multiphase and miscible multicomponent flow and transport in heterogeneous porous media. The discussion presented in the paper summarizes the results of in Upscaled Modeling in Multiphase Flow Applications by Ginting et al. (2004) and in Upscaling of Multiphase and Multicomponent Flow by Ginting et al. (2006). Perturbation approaches are used to ...
متن کاملSmoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media
Smoothed particle hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and advection-diffusionreaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-sc...
متن کاملOn the selection of primary variables in numerical formulation for modeling multiphase flow in porous media.
Selecting the proper primary variables is a critical step in efficiently modeling the highly nonlinear problem of multiphase subsurface flow in a heterogeneous porous-fractured media. Current simulation and ground modeling techniques consist of (1) spatial discretization of mass and/or heat conservation equations using finite difference or finite element methods; (2) fully implicit time discret...
متن کامل